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1. INTRODUCTION

The development of an Autonomous Land Vehicle (ALV) is a central prob-

lem in artificial intelligence and robotics, and has been extensively studied [1-12].

To perform visual navigation, a robot must gather information about its environ-

ment through external sensors, interpret the output of these sensors, construct a

scene map and a plan sufficient for the task at hand, and then monitor and exe-

cute the plan.

As a first step, real time visual navigation systems for road following were

developed in which simple methods for detecting road edges were applied in sim-

ple environments [1,4,5,12, etc.]. For even slightly more complicated scenes, the

difficulty of the problem increases dramatically; therefore a world model such as a

map could be very important for successful navigation through such environ-

ments.

Sometimes, accurate, quantitative maps may be available in advance [131,

but more often, maps are less descriptive and provide only global information, as

in a conventional geographical map [14]. In other cases, the robot may try to

construct the map from sensory data in unknown environments. Elfes [15]

developed a sonar-based mapping and navigation system which constructs sonar

maps of the environment viewed from the top and updates them with recently

acquired sonar information. Tsuji and Zheng [16] discussed the differences

between 2-D maps like Elfes's and the perspective maps proposed in their

stereo-vision-based mobile robot system. Their point is that 2-1) maps are easy

to understand but do not naturally capture sensor resolution ani accuracy. They
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used perspective maps for navigation in which 3-D information obtained by

stereo vision is represented in the image coordinate system.

Range images are attractive because direct use of 3-D information is possible

from these images. Various methods for acquisition of range images are described

in [17]. Two kinds of techniques have been developed for range image processing.

One is to apply masks to range images for edge detection [18], as in conventional

2-D intensity image analysis. These methods are suitable for obstacle detection

in outdoor scene [19,20] because of fast processing which is necessary for real time

navigation. On the other hand, extraction of geometrical properties such as sur-

face normals and curvatures from a range image is also important for segmenta-

tion. The common approach involves fitting a surface normal to each pixel [21,22

etc.], then classifying each point according to its geometrical properties.

In this paper, we propose a method for building a 3-D world model for a

mobile robot from sensory data derived from outdoor scenes. The 3-D world

model consists of three kinds of maps: a sensor map, a local map, and a global

map. In our system, a range image (sensor map) is transformed to a height map

(local map) with respect to the mobile robot in which gray levels show the height

from the assumed ground plane. Segmentation of the height map into unex-

plored, occluded, traversable and obstacle regions is straightforward from the

height information. Moreover, obstacle regions are classified into artificial objects

or natural objects according to their geometrical properties such as slope and cur-

vature, which are easily obtained by applying simple mask operators to the

height map. A drawback of the height map-recovery of planes vertical to the

-2-'r



ground plane-is overcome by using multiple height maps which include the max-

imum and minimum height for each point on the ground plane. Multiple height

maps are useful not only for finding vertical planes but also for mapping obstacle

regions into the video image (one of the sensor maps) for segmentation.

Results obtained using a landscape model and the Maryland ALV simulator

[4] are discussed in the next section.

2. SYSTEM CONFIGURATION

2.1 Physical ALV Simulation System

Our physical ALV simulation system was developed in our laboratory [4] to

provide a low cost experimental environment for navigation (as compared with a

real outdoor vehicle [7,10]). A range finder based on structured light was recently

added to this system. Planes of light are projected from a rotating mirror con-

trolled by a stepping motor (see [23] for more detail). More recently, we extended

the system in two ways. First, we developed a drive simulator program which

controls the speed and steering angle of the vehicle during the motion. The cam-

era height and camera tilt relative to the ground plane are kept constant during

the motion through position feedback from three leg sensors attached to the cam-

era (see [241 for more detail).

Previously, a terrain board on which a road network is painted was used. It

was oriented vertically to increase the flexibility of the camera motion simulated

by the robot arm. Due to the vertical orientation, it was very difficult to put

object models such as trees, bushes, buildings, and other vehicles on the board.

-3-
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We are therefore now using a horizontal terrain board so that we can set up

object models without permanently fixing their positions. Figure 1 shows a pic-

ture of the new board with many object models such as trees, bushes, cabins, a

mail box, and cars. The camera is aimed at the board to input a picture.

2.2 Overview of Map Building System

Figure 2 shows the architecture of our system. In this figure, we omit other

modules such as the path planner, navigator, pilot, and supervisor (see [8]) in

order to concentrate on the map building system.

The 3-D world model for a mobile robot consists of three kinds of maps: a

sensor map, a local map, and a global map. Elfes [151 in his sonar mapping and

navigation system proposed multiple axes of representation of a sensor map (reso-

lution axis, geographical axis, and abstraction axis) and adopted three levels

(view, local map, global map) on the geographical axis. We generalized these

three levels so that other sensory data are applicable. Figure 3 shows the

geometrical relation between the coordinate systems of the sensor map, the local

map, and the global map. Each sensor has its own coordinate system; for exam-

pie, an intensity image is represented in the camera centered coordinate system

and a range image in the range finder centered coordinate system, both of which

are fixed to the robot (vehicle). Here, we assume that the relation between sensor

coordinate systems and vehicle coordinate system is known, and that motion

information (the relation between local maps at different locations) is available,

but not always accurate. A Local Map Builder builds the local maps which

represent an integration of the sensor maps in the robot (vehicle) centered

-4-
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coordinate system. Stereo matching, which we do not consider in this paper, is

one possible strategy of local map building for obtaining the depth map (local

map) [16,301. Here, we propose height maps obtained from the range image as

local maps. The height map is analyzed by the Obstacle Finder and the Obstacle

Classifier to segment it into unexplored, occluded, traversable, and obstacle

regions and then to classify the obstacle regions into artificial or natural objects.

The result of the height map analysis is mapped onto the intensity image by the

Obstacle Mapper in order to segment the intensity image. The global map is a

final map obtained by the Local Map Integrator which matches and updates local

maps at different observing stations in the world coordinate system.

In the following, each module is described along with some experimental

results.

3. HEIGHT MAP ANALYSIS

3.1 Local Map Builder (From Range Image to Height Map)

The local map builder builds local maps from sensor maps. Here, we deal

with a video image taken by a single camera and a range image obtained from

our range finder [231 as sensor maps. Figures 4 (a) and (b) show examples of

these sensor maps. The input scene includes a straight road, T-type intersection,

two cabins, one truck, two cars, a mailbox, a stop sign at the intersection, trees,

and bushes as shown in Figure 4(a). Figure 4(b) is the range image corresponding

to Figure 4(a). The darker points are closer to the range finder and the brighter

points are farther from it. In the white regions, range information is not avail-
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able due to inadequate reflection or occlusion. Although actual range finders such

as the ERIM range scanner [19] measure radial distances rather than Cartesian

coordinates along both axes, the range image obtained from our range finder has

irregular coordinate axes due to its special ranging geometry [23]; the vertical

coordinate is radial but the horizontal coordinate is the same as that of the inten-

sity image.

The range image is transformed into a height map in the vehicle centered

coo,,dinate system based on the known height and tilt of the range finder relative

to the vehicle. The height map is a 256X256 image; each pixel corresponds to

1 mm 2 on the board. The entire map corresponds to a square of side length 256

mm; the scale of the board is 87:1 (HO scale). Gray levels encode height from

the assumed ground plane. Since the range is sparse and noisy at distant points,

smoothing is necessary. We applied an edge-preserving smoothing method [25] to

the height map in order to avoid a mixed pixel problem of high and low points.

Figure 5 shows the filtered height map of the input scene (Figure 4(b)); Figure

5(a) shows a gray level image and Figure 5(b) shows its perspective view.

One drawback of the height map is that it is unable to represent vertical

planes, especially these under horizontal or sloped planes, because the range

information corresponding to multiple points in the vertical direction is reduced

to one point in the height map. This is especially undesirable since the range

information on the vertical planes is more accurate than that on the horizontal

planes. Thus, we compute a multiple height map for each image which includes

the maximum and minimum heights for each point on the height map, and the



number of points in the range image which are mapped into any point on the

height map. In Figure 5(a), the maximum height for each point is shown. Figure

5 (c) shows the differences between the maximum and minimum heights. High

difference regions are candidates for vertical planes. Counting the number of

points inside such candidate regions can be used to check for the existence of

vertical planes.

3.2 Obstacle Finder (Segmentation of Height Map)

The first step in the height map analysis is to segment the height map into

unexplored, occluded, traversable, and obstacle regions. The height map consists

of two types of regions-those in which the height information is available and

those in which it is not. The latter regions are classified into unexplored or

occluded regions. Unexplored regions are outside the visual field of the range

finder, and therefore are easily detected by using the calibration parameters of

the range finder (height, tilt, and scanning angle). The remaining regions in this

category are labeled as occluded regions. Some regions which are not occluded

may be classified into occluded regions if the height information is unavailable

due to causes such as inadequate reflection. These regions can be often seen

inside bushes or trees with many leaves.

Finding traversable regions is straightforward. First, identify those points

close to the assumed ground plane and construct atomic regions for the travers-

able region. Next, expand the atomic regions by merging other points surround-

ing them which have low slope and low eurvat ire. 'ie desirable feature of the

height map) is that t he out puts of the first anid second derivatiN-es of the height

-7-

4 4 P ~3 ~.~ r~. ~4 4 %~( %~t4 !



map correspond to the magnitudes of the slope and curvature of the surface

because the locations of the points in the height map are represented with Carte-

sian coordinates. Figures 6 show the magnitudes of the first (Sobel) and second

derivatives of the height map (Figure 5(a)) using, a mask size of 3 by 3 pixels.

The remaining regions are labeled as obstacle regions. Figure 7 shows the final

result of the segmentation of the height map. White, light gray, dark gray, and

black regions are unexplored, occluded, traversable, and obstacle regions, respec-

tively. We can see that the boundaries of the obstacle regions have high slope

and/or high curvature (see Figures 6).

The result of segmentation of the height map should be useful for path plan-

ning since many path planning algorithms are based on a top view of the

configuration of obstacles and free space [261.

3.3 Obstacle Classifier

The segmented height map constructed by the Obstacle Finder is very useful

for navigation tasks such as avoiding obstacles, but does not contain sufficient

information explicit enough for higher level tasks such as landmark or object

recognition. As a first step in object recognition, we try to classify obstacle

regions as artificial objects or parts of natural objects. Many artificial objects

such as cabins, cars, mailboxes, and road signs (shown in Figure 4(a)) have planar

surfaces, which yield constant slopes and low curvatures in the height map and

linear features in the intensity image. On the other hand, natural objects such as

trees and bushes have fine structures with convex and concave surfaces, which

yield various slopes and/or high curvatures in the height map and therefore large
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variances of brightness in the intensity image (the reverse is not always true).

Thus, utilization not only of the height map but also of the intensity image

is useful for obstacle classification. In order to use the brightness information in

the intensity image, we map the obstacle regions into the intensity image to seg-

ment it. The mapping of obstacles into the intensity image at first seems

straightforward based on the geometrical relation between the camera and the

range finder. However, it is complicated by the need to correctly choose between

the maximum and minimum heights associated with each point in the height

map. We should use the minimum height when the obstacle is bounded by

traversable regions and the maximum height when the obstacle occludes other

objects behind it. Classifying the boundaries of obstacle regions in the height

map and using the multiple height map, the obstacle mapper maps the obstacles

into the intensity image as follows.

(1) Classify each boundary point of the obstacle region in the height map accord-

ing to the geometrical relation between the point, the occluded region and the

traversable region in the segmented height map (Figure 7).

(2) Use the minimum height if the point is adjacent to a traversable region or is

on an occluded boundary (a boundary point is labeled as on an occluded boun-

dary when the occluded region is between the boundary point and the range

finder).

(3) Use the maximum height if the point is on an occluding boundary (a boun-

dary point is labeled as on an occluding boundary when it is between the

occluded region and the range finder).

1 I -g -p



Figure 8 shows the result of this mapping. The cars on the road and in

front of the cabin on the right side, the mailbox and the bushes on the left side

are finely segmented in the intensity image. The truck at the intersection is

mapped incorrectly because its range image contains only a vertical surface whose

boundary shape is very unstable. The bottom roof line of the cabin on the left

side is also incorrect because of the bad range data. The reason that the top roof

line of the cabin on the right side drops suddenly to the ground plane is that

there is a lower object behind the cabin and the obstacle region in the height

map includes both the cabin and the lower object.

The next step is to classify the obstacles using the properties of the height

map and the brightness in the intensity image. Before identifying each obstacle

region as an artificial or natural object, resegmentation is necessary because some

regions include both artificial and natural objects, for example regions A, B, and

C in Figure 8(b). Region A includes a cabin and bushes beside it, region B

includes a cabin and a lower object behind it, and region C includes a stop sign

and bushes. There must be boundaries between two different regions inside one

obstacle region in the segmented height map and these boundary points must

have high slope and/or high curvature. Figure 9 shows the result of resegmenta-

tion using the high slope and high curvature points. There are new interior

boundaries in the obstacle regions A, B, and C. Next, the obstacle classifier

classifies each resegmented region according to the following criteria.

(1) If a region has sufficient size (larger than a pre-determined threshold), con-

stant slope (small variance of slope), and low curvature (low mean curvature and
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small variance of the curvature), then the region is an artificial object.

(2) If a region has sufficient size and high curvature (high mean curvature and

large variance of the curvature) and large variance of the brightness in the inten-

sity image, then the region is a part of a natural object.

(3) Otherwise, the region is regarded as uncertain in the current system.

In Figure 9, white, gray, and black regions correspond to artificial, natural,

and uncertain objects, respectively. Small regions are almost always labeled as

uncertain. The roofs of the two cabins and the car on the road are correctly

interpreted as artificial objects. However, the truck, the mailbox, and the stop

sign are misinterpreted as natural objects because of high curvature due to verti-

cal planes. The car in front of the right cabin is also misinterpreted as a natural

object because the range data from the front windshield is very noisy and yields

spurious high curvatures. Uncertain regions and some regions with vertical sur-

faces require closer examination for correct interpretation.

3.4 Local Map Integrator

During the motion of the vehicle, the system produces a sequence of local

maps constructed at different observation stations. These local maps should be

integrated into a global map in the world centered coordinate system. The local

map integrator consists of two parts; the first one matches two local maps to

determine the correct motion parameters of the vehicle, and the second updates

the descriptions of region properties. Matching is performed as follows by using

the two segmented height maps at different locations.

(1) Match the traversable regions between the two height maps. Since the

1 -



traversable regions are usually the larger planar regions in the segmented map

and rough estimates of the motion parameters are ordinarily available from the

internal sensors of the vehicle, this matching is relatively straightforward. From

this matching, the number of motion parameters of the vehicle is reduced from 6

to 3; two translational components and one rotational component on a plane.

(2) Determine the remaining motion parameters by matching the vertical plane

parts between the two segmented height maps. To do this, the vertical planes in

the height map should be correctly identified by the obstacle classifier as

described in the previous section. The vertical planes are represented as line seg-

ments in the height map. The end points of these line segments are used for

matching, but the end points bounded by occluded regions are not used for

matching because the locations of these points might change. Also, special care

needs to be taken for moving objects. In the current system, we use a heuristic

for detecting moving objects. An obstacle surrounded by traversable regions is a

candidate moving object because moving objects should be inside traversable

regions (except for flying objects). The vertical planes belonging to the candidate

moving objects or bounded by them are not used for determining the motion

parameters.

From the motion parameters determined in this way from two segmented

height maps, the local map integrator overlays the two maps in the world cen-

tered coordinate system in order to update region properties. Labels of regions

(unexplored, occluded, traversable, and obstacle) can be transferred from the first

map to the second map as shown in Figure 10. The local map integrator adopts

- 12 -
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a label oriented by an arrow when a region has different labels in the first map

and the second map. Special care needs to be taken for moving objects because

their labels might change from "obstacle" to "traversable" between the two

maps (see the broken arrow in Figure 10). Currently, we are developing the local

map integrator, and no experimental results are available.

4. DISCUSSION AND FUTURE WORK

A map building system for a mobile robot that uses sensory data has been

described. We have proposed the use of a height map obtained from a range

image to support various tasks such as path planning and landmark recognition.

The height map is easy to recover and calculation of geometrical properties such

as slope and curvature is straightforward.

The current obstacle classifier primarily uses height information and makes

little use of brightness information in identifying obstacles as artificial or natural

objects. The experimental results include some errors. Errors due to vertical

planes can be corrected verifying the existence of the vertical plane in the multi-

ple height maps and obtaining more correct parameters from the range image

(sensor map). Other errors might be corrected by the use of color images since

color information is often useful for segmentation of images of outdoor scenes

[27].

The global map is obtained in the current system from geometrical matching

of the height map and simple manipulation of the labels (umxp~lored, occluded,

traversable, and obstacle) and sublabels (artificial or natural). For more compli-
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cated scenes or tasks, more complex representations would be necessary. The

ultimate goal of our research is to make our map building system useful in the

context of knowledge based systems such as [28,291 in which the manager pro-

vides the means for integration of sensor-based data with stored knowledge to

construct a world model.
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Figure 1. Photo of new terrain board.
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Figure 2. Overview of map building system.
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Figure 3. Geometrical relation of the coordinate systems of the three maps.

Figure 4. Sensor maps. (a) An intensity image viewed from the camera; (b) a ,"Frange image viewed from the range finder.
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Figure 6. Slope and curvature maps. (a) Slope; (b) curvature.
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Figure 7. Segmentation of height map.
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Figure 8. Mapping an obstacle region into eitest mae a)Mpe

region; (b) obstacle map.
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Fig-ure 10. Transition of labels.

Figure 0. Classification of obstacles.
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